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Numerical results are presented for the free-convection boundary-layer equations of the 
Ostwald de-Waele non-Newtonian power-law type fluids near a three-dimensional (3-D) 
stagnation point of attachment on an isothermal surface. The existence of dual solutions 
that are three-dimensional in nature have been verified by means of a numerical procedure. 
An asymptotic solution for very large Prandtl numbers has also been derived. Solutions 
are presented for a range of values of the geometric curvature parameter c, the power-law 
index n, and the Prandtl number Pr. 
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Introduction 

The problem of boundary-layer free convection of a viscous 
fluid in the vicinity of a three-dimensional (3-D) stagnation 
point on an isothermal surface has been the object of several 
studies in the past. For example, such flows have been examined 
by Poots (1964), Banks (1972), and Ingham et al. (1984). The 
work of Poots is particularly interesting because he has derived 
the boundary-layer equations governing the free convection 
flow at a general 3-D lower stagnation point, and has shown 
that the two-dimensional (2-D) and axisymmetric flows are just 
two special cases from a more general point of view. Poots has, 
in fact, given exact numerical solutions to the 3-D boundary- 
layer equations, where the Prandtl number was 0.72, for a 
number of blunt body shapes. Then, Banks has shown that 
other solutions exist over the whole range of stagnation points 
and Prandtl numbers. The unsteady free-convection flow of a 
viscous fluid near 3-D stagnation point on a regular isothermal 
surface has been analyzed by Ingham et al. Finally, we mention 
here the papers by Wang (1988) and Ramachandran et ai. 
(1988), who have investigated the effect of free or mixed 
convection on 2-D and axisymmetric stagnation flows on a 
vertical plate. 
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A number of industrially important fluids such as molten 
plastics, polymers, pulps, foods, and slurries exhibit non- 
Newtonian fluid behavior. Because of the growing use of these 
non-Newtonian fluids in various manufacturing and processing 
industries, considerable efforts have been directed toward 
understanding their friction and heat transfer characteristics. 
See the articles by Shenoy and Mashelkar (1982) and Shenoy 
(1986) for comprehensive reviews. 

The object of this paper is to study the problem of free 
convection of a non-Newtonian fluid obeying the power-law 
model at a 3-D stagnation point of attachment over an 
isothermal surface. Similar solutions for the governing 
boundary-layer equations are obtained. The derived ordinary 
differential equations are then solved numerically for a wide 
range of three parameters: the power-law index n; the geometric 
curvature parameter c; and the Prandtl number Pr. The overall 
focus of the analysis is to obtain quantitative information on 
the effects of these parameters on the flow and heat transfer 
characteristics. The solutions for plane and axisymmetric flows 
are two special cases covered herein from a more general point 
of view. The particular solution for a Newtonian fluid is 
compared with the published results. 

Governing equations 

We consider the steady incompressible laminar boundary layer 
flow of a non-Newtonian fluid in the vicinity of a 3-D stagnation 
point on a regular surface under the effect of free convection. 
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We take the temperature of the ambient fluid to be Too (a 
constant), and the body is maintained at a constant 
temperature Tw(> Too). Moreover, in accordance with previous 
work reported by Shulman et al. (1975), Shvets and 
Vishnevskeiy (1987), Gryglaszewski and Saljnikov (1989) and 
Pop et al. (1993) the following transport properties based on 
the power-law model are assumed to hold 

= K 1 1  ( n - 1 ) / 2 ~  Tij --P6ij + ~ 2 ~o (1) 

q = -kl½121"VT (2) 

A locally orthogonal set of co-ordinates (x, y, z) is chosen with 
the stagnation point in question at the origin O (0, 0, 0) and so 
that z measures distance normal to the surface at O. The 
parametric curves x = constant and y = constant on the 
surface coincide with the lines of curvature. In this co-ordinate 
system, the appropriate 3-D boundary-layer equations for the 
present study can be written as follows: 

du av Ow 
- -  + - -  + - -  = 0 ( 3 )  
dx dy t~z 

tgu au 
u - - + v - -  

dx gy 

¢9u K d ( du ("- z) du\  
+ w ~z = O*fl(T - Too)ax + - -  - -  

I ) p az \lYzl 
(4) 

dv dv gv 
u - -  + v - -  + w - -  = g*fl(T-- T~) 

~3x dy gz 

K 0 ( lOul ("- ' '  Or)  
by + - -  

u + v - -  + w 
/ ~-z) dx ~y gz gz \1 azl 

(5) 

(6) 

As Banks (1972) pointed out, the body is of nodal type at 
(0, 0, 0) if the parameter,; a and b are non-negative, and the 
solutions of Equations 3-6 correspond to stagnation points 
that are then nodal points of attachment. However, if one of a 
and b is negative, the body is of saddle type, and it is to be 
assumed that certain solutions of the equations will correspond 
to saddle points of attachment. On the other hand, if a and b 
are negative, the body is again of nodal type, but the flow is 
one of separation. Without loss of generality, we consider here 
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only the case when the stagnation point is of a nodal point of 
attachment. It is important to mention that we have assumed 
that v << u and therefore, neglected (dv/az) from the apparent 
viscosity terms in Equations 4-6. Furthermore, we have 
imposed the condition s = n -  1, so that Equations 3-6 
reduce to ordinary differential equations (see Pop and Gorla 
1990). 

The problem is completely posed by adding the boundary 
conditions 

u(x, y, O) = v(x, y, O) = w(x, y, O) = O, 7(x,y, 0 ) =  Tw 

u(x, y, oo) = v(x, y, oo) = 0, T(x,  y, 0o) = To~ (7b) 

We now seek similarity solutions of Equation 3-6 subject 
to Equation 7 of the form 

u = Uo ( a x ) f  (r/) (8a) 

v = U o (ay)cg'O1) (8b) 

W = - Uo(ax) ("- 1)/(,+ 1) G r -  1/2(,+ u[{2n/( n + 1)}f 

+ {(1 - n)/(n + 1)}nf' + cg] (8c) 

h(n) = (T  - T~)/(Tw - T=) (8d) 

where 

~l = (ax) - ("-  1)/(, + l) Grl/2(,+ 1) (az) (9) 

is the similarity variable. Here c = b/a is a geometric curvature 
parameter; U o =  [#*fl(Tw-Too)/a] 1/2 is the characteristic 
velocity; and Gr is the modified Grashof number defined as 
follows: Gr = (p/K)2a-("+ 2)[g*fl(Tw - T®)] 2-". 

Substituting Equations 8a-d and 9 into Equations 4-6, 
we obtain 

( I f " l " - l f " )  ' + [2n/(n + 1)f + c # ] f "  - (f,)2 + h = 0 (10) 

(I f "  l" -10") ' + [2n/(n + 1)f + c0]#" - c(g') 2 + ch = 0 (10) 

1/Pr( l f " l" - lh ' )  ' + [2n/(n + 1)f + c#]h' = 0 (12) 

where Pr = K/(p~) is the Prandtl number, and primes denote 
differentiation with respect to q. The transformed boundary 
conditions now become 

f(0) = f'(0) = g(0) = g'(0) = 0, h(0) = I (13a) 

f '(oo) = g'(oo) = h(oo) = 0 (13b) 

Notation 
a, b 

C 

e/]  

f,o^ 
f t , f l , g l , h l  

h 
F , G , H  
#* 

Gr 
I2 
k 
K 
n 

Nu 
P 
Pr 
q 

curvatures of the body surface measured 
in the planes y = 0 and x = 0, 
respectively 
geometric curvature parameter 
strain rate tensor component 
dimensionless reduced stream functions 
functions associated with large Prandtl 
numbe:r 
dimensionless temperature 
functions associated with dual solutions 
acceleration due to gravity 
modified Grashof number 
second invariant of the strain rate tensor 
modified thermal conductivity 
consistency index 
fluid power-law index 
Nusselt number 
pressure 
Prandtl number 
heat flux 

S 

T 
U,/) ,  W 

Uo 
x, y, z 

heat transfer power-law index 
temperature 
velocity components along (x, y, z) 
directions 
characteristic velocity 
local orthogonal coordinates with x and 
y axes along the body surface and the 
coordinate z normal to the surface 

Greek symbols" 

fl 
6 o 
~,~,~ 
P 
T U 

modified thermal diffusivity 
volumetric expansion coefficient 
unit tensor 
similarity variables 
density 
stress tensor component 

Subscripts 

14) 

O0 

refers to surface values 
refers to values in the ambient fluid 
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It is important  to note at this point that for c = 0, we obtain 
the 2-D problem by assuming O --- 0; whereas, for c = 1 and 
assuming f = O results in the axisymmetric problem for this 
flow configuration. 

Once the similarity functions (f, O, h) are known, the Nusselt 
number  can be defined as follows: 

Nu = qw/[ka(Tw - T~)(aUo)"-  1] (14) 

where q~ is determined from Equations 2. Using here 
Equations 8 and 9, we can obtain a heat transfer group, 
which is given by the following: 

NuGr-"/2(" + 1)(ax)-( . -  1)/(. + 1~ = _ ] f "(0) 1"- 1 h'(0) (15) 

Dual solutions 

We show in this section that for c = 0, a solution exists of 
Equations 10-12 subject to Equation 13, the resulting 
flowfield being of a 3-D nature. Thus, when c = 0, and 
assuming # = 0, Equations 10 and 12 become 

( I f " l " - l f " )  ' + 2n / (n+  1)if" - ( f , )2 + h = 0 (16) 

1 / P r ( l f " l " - l h ' )  ' + 2n/(n + 1)Jh' = 0 (17) 

subject to 

f(0) = f'(0) = 0, h(0) = 1 (18a) 

f'(oo) = h(oo) = 0 (18b) 

Furthermore, following Banks (1972), we show that another 
solution of Equations 10-13 is possible by first writing G = c9 
and (F ,H)  instead of ( f  h). Substituting these forms into 
Equations 10-12, and taking the limit as c --* 0, we obtain 

( IF"I" - IF")  ' + [2n/(n + 1)F + G]F'  - (V') z + H = 0 (19) 

(IF"I"-~G") ' + [2n/(n + 1)F + G]G" - (G') z = 0 (20) 

1 
p~ ( IF" I" - IH ' )  ' + [2n/(n + 1)F + G]H'  = 0 (21) 

subject to the same boundary conditions as in Equation 13. 
It should be mentioned here that the velocity in the third 
dimension (i.e., in the oy-direction) is, by virtue of Equation 
(8b), given by 

v = Uo(ay)G'(q ) (22) 

and so is a non-zero physical component,  provided a non-zero 
function G'(q) exists. Now, although G = 0 is clearly one 
solution, the numerical solution of Equation 20 shows that 
another solution of this equation exists. 

Large Prandtl number solution 

When Pr is large, we introduce variables 

= pr./2(.+ 1)q (23) 

f l (~ )  = pr(2" + 1)/2(. + 1)f(q) (24a) 

gl(~) = Pr(2"+ 1)/2(.+ 1)g(q), hl(~ ) = h(q) (24b) 

From Equations 10-12, we then have the following: 

( l /~l"-zf~) ' + hi = Pr-~{(f'x) 2 - [2n/(n + 1)f~ + c g x ] f ~  } 
(25) 

(If~l"-Z0~) ' + ehl  = Pr- l{c(o '0  z - [2n/(n + 1)fl + coz]g';} 
(26) 

( I f '~ l"- lh 'O ' + [2n/(n + 1)f 1 + cg~]h' 1 = 0 (27) 

where primes now imply differentiation with respect to ~. The 
boundary conditions are the same as in Equation 13. Letting 
Pr --. oo, we obtain the following: 

( I f~ l " - l f ' ; )  ' + h 1 = 0 (28) 

(If~l"-lg~) ' + ch 1 = 0 (29) 

and Equation 27 remains unchanged. The boundary 
conditions for these equations are as follows: 

f~(0) = f'l(0) = 01(0) = 0'1(0) = 0, h,(0) = 1 (30a) 

f';(oo) = g'~(oo) = hi(oo ) = 0 (30b) 

We note that the boundary  conditions f ' 1 ( o o ) = 0  and 
g'l(OO) = 0 resulting from Equation 13 cannot be applied for 
Equations 27-29, and instead, we impose zero shear stress at 

= oo. The physical reason for this assumption is because as 
Pr becomes very large, the thermal layer becomes much thinner 
than the momentum layer, so that the edge of the thermal layer 
the velocities are still finite. 

From Equations 28 and 29 it follows that 

hi = - ( I f ' ; l " - l f ' ; )  ', gx = cfl (31) 

which are then substituted into Equation 27 to obtain the 
following: 

[ I f ' ~ l " - l ( I f ' ; l " - l f ' ~ ) " ]  ' + {[2n/(n + 1) + c ' } f~ ( I f ' ~ l " - l f ' ~ )  " = 0 
(32) 

along with the boundary  conditions 

f~(0) = f'l(0) = 0, f'~'(0) = - 1 (33a) 

f'~(m) = f'£'(oo) = 0 (33b) 

Now the following new variables 

f l ( ( )  = [2n/(n + 1) + c213/(5-n)fl(~ ) (34a) 

and 

( = [2n / (n+  1) + c211/~5-")~ (34b) 

may be substituted into Equation 32 to eliminate the 
parameter c. After some manipulations, we get the following: 

,, , , ,  ^ ,, ,, in- 1 ",, ¢ t [ I f ; l " - l ( I f ' ~ l " - l f  ,) ] + f l ( l f  l f O = 0  (35) 

in which primes now signify differentiation with respect to ~. 
The boundary conditions of this equation are seen to be as 
follows: 

fl(0) =f ' l (0)  = 0, f'~'(0) = - 1 (36a) 

f ~ ( ~ )  = f'~'(oo) = 0 (36b) 

We remark to this end that for n---1  (Newtonian fluid), 
Equations 35 and 36 reduce to the equations already 
reported by Banks (1972). 

Results and discussion 

Because analytical solutions to Equations 10-12, 19-21, and 
35 are unlikely to be obtained, we have resorted to obtaining 
numerical solutions. The numerical scheme used is the 
fourth-order Runge-Kut ta  method. A comprehensive set of 
results have been obtained covering the ranges 0.4 < n < 2.0 
and 0 < c < 1. The Prandtl  number  has been taken to be 10 
and 100. A selection of these results is presented here with a 
view to isolate the effect of each individual parameter. 

Figures 1-3 illustrate velocity and temperature profiles Or,, 
g', h) for c = 0.5 and n ranging from 0.5 to 1.5. The results 
indicate that the velocity maximum decreases with n for 
dilatant fluids (n > 1); whereas, for pseudoplastic flows (n < 1) 

64 Int. J. Heat and Fluid Flow, Vol. 16, No. 1, February 1995 



0.20 

0.15 = . 

0.10 

0.05 

0 1.0 2.0 3.0 4.0 

Figure I Veloc i ty  profi les f(r/) for c =  0.5 (sol id line, Pr = 10; 
dashed line, Pr = 100) 

Free convection in power-law fluids: R. S. R. Gorla et al. 

1.oo 

0.75 

~O.SO 

O.25 

0 1.0 2.0 3,+0.. 

Figure 3 Temperature profi les h(r/) for c = 0 . 5  (sol id line, 
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Figure 2 Veloc i ty  profi les g'(r/) for c = 0.5 (sol id line, Pr = 1 O; 
dashed line, Pr = 100) 

this quantity is relatively constant. The location of the 
maximum velocity within the boundary layer is observed to 
move closer to the wall as the value of n increases. The 
momentum boundary layer thickness decreases as n increases. 
The results indicate that the thermal boundary-layer thickness 
decreases as n increases, and the temperature profiles for the 
pseudoplastic fluids tend to assume an s-shape within the 
boundary layer, Moreover, it seems that for pseudoplastic 
fluids, there appears a reverse flow 0 ° < 0 and g' < 0) at some 
distance from the surface. 

Table 1 summarizes the wall gradients f"(O), g"(O), and h'(O) 
from which the friction factor and Nusselt number may be 
calculated. To examine the accuracy of the present results, we 

have compared our results with these reported by Banks (1972) 
• and Poots (1964) for the case of a Newtonian fluid (n = 1) with 

Pr = 0.72. This is shown in Figure 4. It is observed that our 
results are in excellent agreement with those reported in the 
literature. 

Figures 5 and 6 display the results for the variation of the 
heat transfer group, Nu Gr -"/2("+1) (ax) -("-1)/("+1) with the 
geometric curvature parameter c and the power-law index n 
for Prandtl numbers of 10 and 100, respectively. It is seen that 
heat transfer decreases with the increase of n and is greater for 
Pr = 100 than for Pr = 10. 

Figures 7-9 display results for the variation of F', - G', and 
H for a range of values of n with Pr = 100. This represents the 
case of c = 0 where a solution exists in which the resulting flow 
field is of a 3-D nature, and as such, is quite distinct from the 
usual 2-D form considered in the literature. The physical 
meaning of such dual solutions is not well understood, although 
Schofieid and Davey (1967) suggest that these may be 
interpreted as finite disturbances to the usual solutions and so 
may be related to the instability of such flows. Experimental 
verification may shed more light on this problem. For n = 1 
and Pr=0 .72 ,  our results indicate that F"(0)=0.9617, 
G"(0) = -0.2821, and H'(0) = -0.2781. The solution reported 
by Banks (1972) for these wall functions are 0.96171, -0.28212, 
and -0.27809 respectively. Table 2 displays our results for 
F"(0), G"(0), and H'(0) for a range of values of n and Pr. The 
flow at stagnation points is classified according to the behavior 
of the skin friction lines on the body surface, and it is clear that 
the 3-D solution presented here corresponds to a saddle point 
of attachment. 
, Figure 10 illustrates the distribution of the velocity profiles 

f't(() within the boundary layer associated with very large 
values of Pr for a range of values of n. It is noticed that there 

^ 

may occur a flow reversal (f'~ < 0), and the flow approaches 
the boundary conditions f'(oo) = 0 and g'(oo) = 0 from below. 

Values of f'~(0) and fii'(0) for some values of n are given in 
Table 3. It is worth mentioning that the present results for 
n = 1 (Newtonian fluid) are in excellent agreement with those 
reported by Banks (1972). Thus, our values are 1.0850 and 
0.5403; whereas, the literature values are 1.085125 and 
0.540235, respectively. 
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Table 1 Values of f"(O), g'(O), and i f(O) for a range of values of 
c, n, and Pr 

n f"(0) g"(0) -/~(0) 

Pr = 0.72, n = 1,0 
c = 0.00 0.8549 0.0000 0.3752 

0.25 0.8447 0.2565 0.3850 
0.50 0.8211 0.4638 0.4075 
0.75 0.7926 0.6277 0.4349 
1.00 0.7630 0.7629 0.4639 

c = 0 . 0 ,  P r = 1 0 . 0  
n = 0.5 0,6219 0.0000 1.1773 

0.8 0.5526 0.0000 0.9532 
1.0 0.5426 0.0000 0.8846 
1.5 0.5512 0.0000 0.8034 
2.0 0.5745 0.0000 0.7752 

c = 0.0, Pr = 100.0 
n = 0.5 0.3210 0.0000 1.81 64 

0.8 0.3149 0.0000 1.6826 
1.0 0.3273 0.0000 1.6698 
1.5 0.3664 0.0000 1.7020 
2.0 0.4083 0.0000 1.7992 

c = 0.25, Pr = 10.0 
n = 0.5 0.6035 0.1762 1.2026 

0.8 0.5419 0.1489 0.9723 
1.0 0.5345 0,1436 0.9015 
1.5 0.5455 0.1423 0.8142 
2.0 0.5691 0.1465 0.7767 

c = 0.25, Pr = 100.0 
n = 0.5 0.3122 0.0835 1.8447 

0.8 0.3096 0.0803 1.7078 
1.0 0.3232 0.0829 1.6948 
1.5 0.3634 0.0920 1.7493 
2.0 0.4028 0.1014 1.8007 

c = 0.50, Pr = 10,0 
n = 0.00 0.5638 0.3096 1.2606 

0.25 0.5178 0.2748 1.01 86 
0.50 0.5147 0.2696 0.9446 
0.75 0.5316 0.2735 0.8555 
1.00 0.5571 0.2840 0.8077 

c = 0.50, Pr = 100.0 
n = 0.5 0.2904 0.1515 1.9203 

0.8 0.2951 0.1510 1.781 5 
1.0 0.3106 0.1579 0.7691 
1.5 0.3529 0.1779 1.8053 
2.0 0.3922 0.1970 1.8218 

c = 0.75, Pr = 10,0 
n = 0.5 0.5205 0.4064 1.3290 

0.8 0.4887 0.3764 1.0787 
1.0 0.4900 0.3753 1.0029 
1.5 0,5129 0.3897 0.9047 
2.0 0.5431 0.4111 0.8711 

c = 0.75, Pr = 100.0 
n = 0.5 0.2651 0.2026 2.0172 

0.8 0.2764 0.2095 1.8832 
1.0 0.2935 0.2218 1.8768 
1.5 0.3401 0.2561 1.9107 
2.0 0.3835 0.2883 2.0054 

c = 1 . 0 ,  P r = 1 0 . 0  
n = 0.5 0.4800 0.4799 1.3990 

0.8 0.4597 0.4597 1.3990 
1.0 0.4648 0.4648 1.0677 
1.5 0.4928 0.4928 0.9632 
2.0 0.5257 0.5256 0.9292 

c = 1 . 0 ,  P r=100 .O  
0.5 0.2417 0.2417 2.1195 
0.8 0.2583 0.2583 1.9950 
1.0 0.2775 0.2775 1.9945 
1.5 0.3259 0.3259 2.0728 
2.0 0.3709 0.3709 2.1598 

1,o 

0 . 8 ~  

"~ 0.6 

0.2 / g - ( o )  

I I I 

0.25 0.50 0.75 1.00 
c 

Figure 4 Values of f ' (0) ,  g"(0),  and - i f ( 0 )  for n = 1 (Newtonian 
fluid) an dPr = 0.72 (solid line, present results; O Banks; A Poots) 
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Variation of heat transfer group with c for Pr = 100 
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T a b l e  2 F'(0), -G " (0 ) ,  and - / 4 ( 0 )  for Pr =0.72,  10, and 100 
for c = 0 case 

Pr n P(0)  - G " ( 0 )  - / 4 ( 0 )  

0.72 1.0 0.9617 0.2821 0.2781 
10 0.5 0.6992 0.2052 0.8727 
10 0.8 0.6213 0.1817 0.7612 
10 1.0 0.6100 0.1790 0.6557 
10 1.5 0.6203 0.1801 0.6312 

100 0.5 0.3611 0.0995 1.431 2 
100 0.8 0.3543 0.0962 1.3742 
100 1.0 0.3682 0.1080 1.2377 
100 1.5 0.4132 0.1241 1.21 25 

o.,,, °'- ° " ' I  n=0.8 
• > i / , 1 : o  

2.0 0.12 
0.12 

\ \  

0 2 4 6 8 10 0 0.5 1.0 1.5 

Figure 10 Velocity profiles f~(~) for large values of Pr 
Figure 8 Dual velocity profiles -G'(r/) for c = 0 and Pr = 100 
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Dual temperature profiles H(r/) for c = 0 and Pr-100 

Concluding remarks 

In this paper, a boundary-layer analysis has been provided for 
the problem of free convection of-a  non-Newtonian fluid 
obeying the Ostwald de-Waele type power-law model in the 

Table  3 f; (0) and f~ for large Pr case 

n /; (o) ~V(o) 

0.5 1.2341 0.7512 
0.8 1.1721 0.6213 
1.0 1.0850 0.5403 
1.5 1.0741 0.5102 

vicinity of a 3-D stagnation point under isothermal boundary 
conditions. The existence of a dual solution; namely, a 3-D 
solution at a 2-D stagnation point has been verified by means 
of a numerical solution. Finally, we have studied the 
boundary-layer behavior at a 3-D stagnation point for infinitely 
large Prandtl numbers. The solutions are obtained for a range 
of values of the geometric curvature parameter, c, the 
power-law index n and the Prandtl number Pr. 
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